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Abstract

An endoreversible four-heat-reservoir absorption heat pump cycle model with a generalized heat transfer law Q ∝ �(T n) is established. The
general relation between the coefficient of performance (COP) and the heating load with Q ∝ �(T n) is deduced. The fundamental optimal relation,
the optimal temperatures of working substance, as well as the optimal heat transfer surface area distributions with linear phenomenological heat
transfer law are derived. Moreover, the effects of heat transfer law on the performance of absorption heat pump are analyzed and the performance
comparison before and after optimizing the distribution of the total heat transfer surface area is performed by numerical example.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Due to environmental pollution and continually rising con-
ventional fuel prices, the thermodynamic cycle, which not only
can utilize low temperature waste heat, solar energy or geother-
mic energy, but also can diminish the pollution to the surround-
ings, attracts more and more peoples’ attention. Absorption heat
pump is one of the promising devices, which can upgrade low-
grade heat to higher temperature levels and is harmless to the
surroundings. Nowadays, finite-time thermodynamics (or finite
surface thermodynamics, or endoreversible thermodynamics, or
entropy generation minimization) [1–11] plays a fundamen-
tal role to evaluate the optimal performance of any thermo-
dynamic cycles. Some authors [12–20] have investigated the
performance of absorption heat pump cycle using finite-time
thermodynamics, and some new significant results for optimal
design of absorption heat pumps have been obtained. Chen and
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Yan [12], Herold [13], Goktun [14] and Chen [15] analyzed the
performance of the three-heat-reservoir heat pump cycle with
the loss of heat resistance [12,13], with losses of heat resistance
and internal irreversibility [14], and with losses of heat resis-
tance, heat leakage and internal irreversibility [15] with linear
(Newtonian) heat transfer law. Kodal et al. [16] analyzed the
thermoeconomic performance of the three-heat-reservoir heat
pump cycle. A three-heat-reservoir absorption heat pump cy-
cle is a simplified model of the absorption heat pump that
the temperature of the condenser is equal to that of the ab-
sorber, but a real absorption heat pump is not. Therefore, a
four-heat-reservoir absorption heat pump cycle model is closer
to a real absorption heat pump. Chen [17] and Chen et al. [18]
analyzed the performance of the four-heat-reservoir absorption
heat pump cycle with losses of heat resistance and internal irre-
versibility [17], and with losses of heat resistance, heat leakage
and internal irreversibility [18] with linear (Newtonian) heat
transfer law.

Real heat transfer between heat reservoirs and working sub-
stance do not always obey linear (Newtonian) heat transfer law.
Chen et al. [19,20] analyzed the performance of the three-heat-
reservoir endoreversible absorption heat pump cycle with linear
phenomenological heat transfer law. Therefore, the aim of this
paper is to establish the endoreversible four-heat-reservoir ab-
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Nomenclature

A total heat transfer surface area . . . . . . . . . . . . . . m2

Ai (i = 1,2,3,4) heat transfer surface area of the ith heat
exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

n heat transfer exponent
Qi (i = 1,2,3,4) rate of heat transfer of ith heat

reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kW
Ti (i = a, c, e, g) temperature of ith heat reservoir . . . . . K
Ti (i = 1,2,3,4) working substance temperature in ith

heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
UA total heat inventory . . . . . . . . . . . . . . . . . . . kW·K−1

Ui (i = 1,2,3,4) Heat transfer coefficient of ith heat
exchanger . . . . . . . . . . . . . . . . . . . . . . . kW·m−2K−1

UiAi (i = 1,2,3,4) Heat conductance of ith heat
exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . kW·K−1

Greek symbol

ψ COP
Π Heating load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kW

ξ distribution of the total rate of heat output between
the absorber and the condenser

Subscript

1–4 working substance process in heat exchanger
a absorber
e evaporator
m maximum
UA after optimizing the distribution of the total heat

exchanger inventory
ψ At maximum COP point
A after optimizing the distribution of the total heat

transfer surface area
c condenser
g generator
r Reversible cycle
Π At maximum heating load point
sorption heat pump cycle model with a generalized heat transfer
law Q ∝ �(T n), and analyzes the performance of the four-
heat-reservoir endoreversible absorption heat pump cycle. The
generalized heat transfer law q ∝ �(T n) includes some spe-
cial cases. When n = 1, the heat transfer obeys Newtonian law;
when n = −1, the heat transfer obeys linear phenomenologi-
cal law used in irreversible thermodynamics, the heat transfer
coefficients in this case are the so-called kinetic coefficients
by Callen [21], and they should be negatives; when n = 2, the
heat transfer is applicable to radiation propagated along a one-
dimensional transmission line [22], and the heat transfer coeffi-
cient in this case is equal to π2k2/(6h), where h is the Planck’s
constant and k is the Stefan–Boltzmann constant; when n = 3,
the heat transfer is applicable to radiation propagated along a
two-dimensional surface [22]; when n = 4, the heat transfer
obeys radiative law if all the bodies are black, and the heat trans-
fer coefficient in this case is related to the Stefan–Boltzmann
constant. A similar work for four-heat-reservoir absorption re-
frigerator was performed by Zheng et al. [23] with heat transfer
law of Q ∝ �(T −1).

2. Theoretical model

A four-heat-reservoir endoreversible absorption heat pump
cycle consists of a generator, an absorber, a condenser and an
evaporator, as shown in Fig. 1. Consider that the flow of the
working substance in the closed cycle is steady closed flow
fashion and the working substance exchanges heat with the heat
reservoirs at temperature Tg , Ta , Tc and Te in the generator,
absorber, condenser and evaporator, respectively. The endore-
versible absorption heat pump cycle means that the cycle with
the sole loss of heat resistance between the working substance
and the heat reservoirs and without any other irreversibilities
inside the cycle and among the heat reservoirs. There are heat
resistances between the working substance and the external
Fig. 1. An endoreversible four-heat-reservoir absorption heat pump cycle
model.

heat reservoirs. Therefore, the temperatures of the working sub-
stance in the generator, absorber, condenser and evaporator are
different from the heat reservoir temperatures and are T1, T2, T3

and T4, respectively, and the following equations hold: Tg > T1,
Ta < T2, Tc < T3 and Te > T4; the overall heat transfer coeffi-
cients in the generator, absorber, condenser and evaporator are
U1, U2, U3 and U4, respectively; and the heat transfer surface
areas of the generator, absorber, condenser and evaporator are
A1, A2, A3 and A4, respectively. The work input required by the
solution pump in the system is negligible relative to the energy
input to the generator, and the work input is neglected for the
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purpose of analysis. It is assumed that the heat transfers obey a
generalized heat transfer law of Q ∝ �(T n) (n �= 0), where n

is a heat transfer exponent. Then, the equations of the rates of
heat transfer may be written as

Q1 = U1A1
(
T n

g − T n
1

)
Q2 = U2A2

(
T n

2 − T n
a

)
Q3 = U3A3

(
T n

3 − T n
c

)
Q4 = U4A4

(
T n

e − T n
4

)
(1)

where Q1, Q2, Q3 and Q4 are the rates of heat transfer
in the generator, absorber, condenser and evaporator, respec-
tively; Ui (i = 1,2,3,4) > 0 when n > 0, and Ui and (i =
1,2,3,4) < 0 when n < 0.

The original paper of Curzon and Ahlborn [1] discussed a
model of reciprocating Carnot heat engine. In that condition,
the heat transfers go through the same surface areas and differ-
ent times. While the present work discussed a model of steady
flow closed heat pump. In this condition, the heat transfers go
through the same time and different surface areas. Therefore,
Eq. (1) used the rate of heat transfer, and did not include the
times of the processes or the cycle period.

From the first law of thermodynamics, one has Q2 + Q3 −
Q1 −Q4 = 0. From the second law of thermodynamics and the
endoreversible property of the cycle, one has Q2/T2 +Q3/T3 −
Q1/T1 − Q4/T4 = 0. Defining a parameter ξ = Q3/Q2 that
denotes the distribution of the total heat output rates between
the absorber and the condenser.

According to the standard definitions of the COP (ψ ) and
the heating load (Π ) of an absorption heat pump and Eq. (1),
one obtains

ψ = (1 + ξ)Q2

Q1
= (1 + ξ)(T −1

1 − T −1
4 )

T −1
2 + ξT −1

3 − (1 + ξ)T −1
4

Π = (1 + ξQ2) = (1 + ξ)U2A2
(
T n

2 − T n
a

)
(2)

According to Eq. (2), one has

Q1 = Π/ψ, Q2 = Π/(1 + ξ)

Q3 = ξΠ/(1 + ξ), Q4 = Π(ψ − 1)/ψ (3)

According to Eqs. (1) and (3), one has

T1 = [
T n

g − Π/(U1A1ψ)
]1/n

T2 = {
T n

a + Π/
[
(1 + ξ)U2A2

]}1/n

T3 = {
T n

c + ξΠ/
[
(1 + ξ)U3A3

]}1/n

T4 = {
T n

e − Π(ψ − 1)/(U4A4ψ)
}1/n (4)

Substituting Eq. (4) into the COP in Eq. (2) yields

(1 + ξ)
[
T n

g − Π/(U1A1ψ)
]−1/n

− ψ
{
T n

a + Π/
[
(1 + ξ)U2A2

]}−1/n

− ξψ
{
T n

c + ξΠ/
[
(1 + ξ)U3A3

]}−1/n

+ (1 + ξ)(ψ − 1)
[
T n

e − Π(ψ − 1)/(U4A4ψ)
]−1/n = 0

(5)
If n = 1, i.e. the heat transfers obey linear (Newtonian) law,
according to Eq. (5), one has

(1 + ξ)
[
Tg − Π/(U1A1ψ)

]−1− ψ
{
Ta + Π/

[
(1 + ξ)U2A2

]}−1

− ψ
{
Tc/ξ + Π/

[
(1 + ξ)U3A3

]}−1

+ (1 + ξ)
[
Te/(ψ − 1) − Π/(U4A4ψ)

]−1 = 0 (6)

Eq. (6) is the general relation between the COP and the heat-
ing load of the endoreversible four-heat-reservoir absorption
heat pump with linear (Newtonian) heat transfer law.

If n = −1, i.e. the heat transfers obey linear phenomenolog-
ical law, according to Eq. (5), one has

(1 + ξ)
[
T −1

g − Π/(U1A1ψ)
] − ψ

{
T −1

a + Π/
[
(1 + ξ)U2A2

]}
− ξψ

{
T −1

c + ξΠ/
[
(1 + ξ)U3A3

]}
+ (1 + ξ)(ψ − 1)

[
T −1

e − Π(ψ − 1)/(U4A4ψ)
] = 0 (7)

Eq. (7) is the general relation between the COP and the heat-
ing load of the endoreversible four-heat-reservoir absorption
heat pump with linear phenomenological heat transfer law.

3. Fundamental optimal relation between the COP and the
heating load

The investment cost of an absorption heat pump mainly de-
pends on the total heat transfer surface area A. Therefore, mini-
mizing the total heat transfer surface area or optimizing the heat
transfer surface area distributions is important to the optimal de-
sign of an absorption heat pump. For this reason, it makes sense
to introduce the total heat transfer surface area A as a design
constraint

A = A1 + A2 + A3 + A4 (8)

For reciprocating cycle, to optimize the temperatures of
working substance is equivalent to optimize the process times.
While for steady flow cycle, to optimize the temperatures of
working substance is equivalent to optimize the heat transfer
surface area distributions. This conclusion has been proved for
various two, three and four heat reservoir direct and inverse
cycles. This means that the optimization for temperatures of
working substance and the optimization for the heat transfer
surface area distributions are twinning.

By optimizing the temperatures T1, T2, T3 and T4 of working
substance, i.e. optimizing the heat transfer surface area distribu-
tions A1/A, A2/A, A3/A and A4/A, one can obtain the optimal
COP for a given heating load and the optimal heating load for a
given COP.

When n = 1, Refs. [17,18] have derived the fundamental op-
timal relation between the COP and the heating load.

When n = −1, this paper derives the fundamental optimal
relation between the COP and the heating load as follows.

In the case of other heat transfer laws, it is difficult to derive
the analytical fundamental optimal relation. One can only at-
tain the optimal numerical solution by numerical optimization
technology. When n = 2 and n = 4, next section of this paper
depicts the fundamental optimal relation curves by numerical
optimization technology.
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According to Eqs. (1), (2), (8) and n = −1, the COP ψA and
the heating load ΠA for the fixed total heat transfer surface area
can be written as

ψA = (1 + ξ)(1 − x1)

1 + ξ − x2 − ξx3
(9)

ΠA = A(1 + ξ)

[
1 + ξ − x2 − ξx3

U1(1 − x1)(x1T
−1
4 − T −1

g )

+ 1

U2(T
−1
a − x2T

−1
4 )

+ ξ

U3(T
−1
c − x3T

−1
4 )

+ x2 + ξx3 − (1 + ξ)x1

U4(1 − x1)(T
−1

4 − T −1
e )

]−1

(10)

where x1 = T4/T1, x2 = T4/T2 and x3 = T4/T3.
To maximize the COP for a given heating load and maxi-

mize the heating load for a given COP, the Lagrangian func-
tion L = ψA + λΠA or L = ΠA + λψA is introduced, where
λ is Lagrangian coefficient. Combining extremal conditions
∂L/∂x1 = 0, ∂L/∂x2 = 0, ∂L/∂x3 = 0 and ∂L/∂T4 = 0 simul-
taneously yields:

U1
(
x1T

−1
4 − T −1

g

)
= U2

(
T −1

a − x2T
−1
4

) = U3
(
T −1

c − x3T
−1
4

)
= U4

(
T −1

4 − T −1
e

)
(11)

According to Eqs. (9)–(11), one has

ΠA = A(1 + ξ)U4ψA

× (1 + ξ)(T −1
e − T −1

g ) + [T −1
a + ξT −1

c − (1 + ξ)T −1
e ]ψA

[(1 + ξ)(1 − b1) − (1 + ξ + b2 + ξb3)ψA]2
(12)

where b1 = (U4/U1)
1/2, b2 = (U4/U2)

1/2 and b3 =
(U4/U3)

1/2.
Eq. (12) determines the optimal heating load for a given

COP, at the same time it determines the optimal COP for a given
heating load of the endoreversible four-heat-reservoir absorp-
tion heat pump. Therefore, Eq. (12) is the fundamental optimal
relation between the COP and the heating load of the endore-
versible four-heat-reservoir absorption heat pump with linear
phenomenological heat transfer law.

Likely, the relations between the optimal temperatures T1A,
T2A, T3A, and T4A of working substance and the optimal COP
are:

T1A = Tg

1 + b1TguA

, T2A = Ta

1 − b2TauA

T3A = Tc

1 − b3TcuA

, T4A = Te

1 + TeuA

(13)

where

uA = (1 + ξ)(T −1
g − T −1

e ) − [T −1
a + ξT −1

c − (1 + ξ)T −1
e ]ψA

(1 + ξ)(1 − b1) − (1 + ξ + b2 + ξb3)ψA

The relations between the optimal heat transfer surface area
distributions and the optimal COP are
A1

A
= b1(1 + ξ)

(b1 − 1)(1 + ξ) + (1 + ξ + b2 + ξb3)ψA

A2

A
= b2ψA

(b1 − 1)(1 + ξ) + (1 + ξ + b2 + ξb3)ψA

A3

A
= ξb3ψA

(b1 − 1)(1 + ξ) + (1 + ξ + b2 + ξb3)ψA

A4

A
= (1 + ξ)(ψA − 1)

(b1 − 1)(1 + ξ) + (1 + ξ + b2 + ξb3)ψA

(14)

4. Numerical examples and analysis

In order to analyze the effects of the heat transfer law on
the general relation between the COP and the heating load of
the cycle, according to Eq. (5), Fig. 2 depicts the general re-
lation curves for four heat transfer laws, i.e. n = −1,1,2,4.
In the calculation, Tg = 420 K, Ta = 340 K, Tc = 350 K, Te =
300 K, ζ = 1.1, b1 = 1.30, b2 = 1.40, b3 = 0.80, A1/A = 0.27,
A2/A = 0.32, A3/A = 0.16 and A4/A = 0.25 are set. It can
be seen from Fig. 2 that the general relation curves between
the COP and the heating load of an endoreversible four-heat-
reservoir absorption heat pump are monotonous. Because the
minimum COP of the heat pump is ψ = 1, the heating load at-
taints to its maximum Πm when ψ = 1. Substituting ψ = 1 into
Eq. (5) for n = −1,1,2,4 yields the corresponding Πm.

According to Eq. (5), when ψ = ψr [8]

ψr = (1 + ξ)(T −1
e − T −1

g )

(T −1
e − T −1

a ) + ξ(T −1
e − T −1

c )
(15)

Π = 0. ψr is the reversible COP of a four-heat-reservoir ab-
sorption heat pump. When 0 < ψ < ψr , the COP and the heat-
ing load are influenced by heat transfer laws quantitatively; and
the COP for a given heating load and the heating load for a
given COP decrease as n increases.

In order to analyze the effects of the heat transfer law on the
fundamental optimal relation between the COP and the heat-
ing load of the cycle, according to Eq. (12), the fundamental
optimal relation curve is depicted for n = −1; according to
Refs. [17,18], the fundamental optimal relation curve is de-
picted for n = 1; according to Eqs. (5) and (8), the heat transfer

Fig. 2. Effects of the heat transfer law on the general relation between the COP
and the heating load.
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Fig. 3. Effects of the heat transfer law on the fundamental optimal relation be-
tween the COP and the heating load.

Fig. 4. Effects of the heat transfer surface area distributions on the cycle perfor-
mance with n = −1.

surface area distributions are optimized by numerical optimiza-
tion technology and the fundamental optimal relation curves are
depicted for n = 2 and n = 4; as shown in Fig. 3. In the cal-
culation, Tg = 420 K, Ta = 340 K, Tc = 350 K, Te = 300 K,
ζ = 1.1, b1 = 1.30, b2 = 1.40 and b3 = 0.80 are set. It can be
seen from Fig. 3 that the fundamental optimal relation curves
between the COP and the heating load of an endoreversible
four-heat-reservoir absorption heat pump are also monotonous.
Fig. 3 shows the dimensionless heating load (the ratio of opti-
mal heating load ΠA to the maximum heating load ΠAm) versus
COP characteristics for four heat transfer laws. When ψA = 1,
the optimal heating load attaints to its maximum ΠAm. Accord-
ing to Eq. (12), when ψA = ψr , ΠA = 0. When 0 < ψA < ψr ,
the optimal COP and the optimal heating load are influenced by
heat transfer laws quantitatively. The absolute values of heat-
ing load for various heat transfer laws cannot be compared.
However, one can see that both the optimal COP for a given
dimensionless heating load and the optimal dimensionless heat-
ing load for a given COP decrease as n increases.

In order to analyze the effects of the heat transfer sur-
face area distributions on the cycle performance, according
to Eqs. (7) and (12), Fig. 4 depicts the Π/ΠAm − ψ curve
with fixed heat transfer surface area distributions and the
ΠA/ΠAm − ψA curve with the optimal heat transfer surface
area distributions for n = −1. In the calculation, the values
are the same as those assumed in the above subsections, re-
spectively. It can be seen from Fig. 4 that the Π/ΠAm − ψ

curve is surrounded by the ΠA/ΠAm − ψA curve. The maxi-
mum heating load, the COP at the heating load Πm, and the
COP for a given heating load increase after optimizing the heat
surface transfer area distributions. These show that the cycle
performance is improved with the optimal heat transfer area
distributions. For example, the maximum heating load ratio is
Πm/ΠAm = 0.65, which shows that the maximum heating load
increases 54% after the heat transfer surface area distributions
are optimized; the COP at the maximum heating load Πm is 1.0
before optimizing the heat transfer surface area distributions,
the COP at the same heating load Πm is 1.25 after optimizing
the heat transfer surface area distributions, which shows that
the COP increases 25% with the optimal heat transfer surface
area distribution.

5. Discussions

5.1. Optimal performance for fixed total heat inventory

The performance optimization can also be carried out by
assuming that the total heat inventory is fixed [24,25]. Us-
ing UA = U1A1 + U2A2 + U3A3 + U4A4 to replace A =
A1 + A2 + A3 + A4, i.e. using the distribution of the heat in-
ventory to replace the distribution of the heat-transfer surface
area, according to Eq. (12), one can obtain the fundamental op-
timal relation between the COP ψUA and the heating load ΠUA

for fixed total heat inventory with linear phenomenological heat
transfer law

ΠUA = (1 + ξ)UA

× (1 + ξ)(T −1
e − T −1

g ) + [T −1
a + ξT −1

c − (1 + ξ)T −1
e ]ψUA

4(1 + ξ)2ψUA

(16)

According to Eq. (13), one can obtain the relation between the
optimal temperatures T1UA, T2UA, T3UA, and T4UA of working
substance and the optimal COP for fixed total heat inventory
with linear phenomenological heat transfer law

T1UA = Tg

1 + b1TguUA

, T2UA = Ta

1 − b2TauUA

T3UA = Tc

1 − b3TcuUA

, T4UA = Te

1 + TeuUA

(17)

where

uUA = [T −1
a + ξT −1

c − (1 + ξ)T −1
e ]ψUA − (1 + ξ)(T −1

g − T −1
e )

2(1 + ξ)ψUA

According to Eq. (14), one can obtain the relations between the
optimal heat inventory distributions and the optimal COP

U1A1

UA
= 1

2ψUA

,
U2A2

UA
= 1

2(1 + ξ)

U3A3 = ξ
,

U4A4 = ψUA − 1
(18)
UA 2(1 + ξ) UA 2ψUA
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According to Eq. (14), one can obtain that U1A1 + U4A4 =
U2A2 + U3A3 = 1

2UA. It shows that the total heat inventory
should be distributed equally in the sides of heat input and heat
output.

5.2. Special cases

The results of this paper includes the optimal performance
of the endoreversible four-heat-reservoir absorption heat pump
cycle, the endoreversible three-heat-reservoir heat pump cycle,
and the endoreversible Carnot heat pump cycle.

When U2 = U3 and Ta = Tc, the endoreversible four-heat-
reservoir absorption heat pump cycle becomes the endore-
versible three-heat-reservoir heat pump cycle. According to
Eq. (5), one can obtain the general relation between the COP
and the heating load of an endoreversible three-heat-reservoir
heat pump cycle as follow
[
T n

g − Π/(U1A1ψ)
]−1/n − ψ

[
T n

a + Π/(U2A2)
]−1/n

+ (ψ − 1)
[
T n

e − Π(ψ − 1)/(U4A4ψ)
]−1/n = 0 (19)

According to Eq. (12), one can obtain the fundamental optimal
relation between the COP and the heating load of an endore-
versible three-heat-reservoir heat pump with linear phenomeno-
logical heat transfer law [19,20] as follow

ΠA = AU4ψA

T −1
e − T −1

g + (T −1
a − T −1

e )ψA

[1 − b1 − (1 + b2)ψA]2
(20)

When U2 = U3, Ta = Tc and Tg → ∞, the heat reservoir Tg

is equivalent to a work reservoir. Therefore, the endoreversible
four-heat-reservoir absorption heat pump cycle becomes the en-
doreversible Carnot heat pump cycle. According to Eq. (5), one
can obtain the general relation between the COP and the heat-
ing load of an endoreversible Carnot heat pump cycle as follow

ψ
[
T n

a + Π/(U2A2)
]−1/n

− (ψ − 1)
[
T n

e − Π(ψ − 1)/(U4A4ψ)
]−1/n = 0 (21)

According to Eq. (12), one can obtain the fundamental optimal
relation between the COP and the heating load of an endore-
versible Carnot heat pump with linear phenomenological heat
transfer law [26] as follow

ΠA = AU2
Te − (ψA − 1)Ta/ψA

TeTa[(1 + δ(ψA − 1)/ψA]2
(22)

where δ = (U2/U4)
1/2.

6. Conclusion

The endoreversible four-heat-reservoir absorption heat pump
cycle model with a generalized heat transfer law Q ∝ �(T n) is
established. The general relation between the COP and the heat-
ing load is derived by using finite-time thermodynamics. The
fundamental optimal relation between the COP and the heating
load, the optimal temperatures of the working substance and the
optimal heat transfer surface area distributions of the four heat
exchangers of the endoreversible four-heat-reservoir absorption
heat pump cycle with linear phenomenological heat transfer law
are derived in this paper. Moreover, the effects of the heat trans-
fer law on the performance of the cycle are studied by numerical
examples. The performance comparison before and after opti-
mizing the distribution of the total heat transfer surface area
is performed by numerical example, and the results show that
the performance is improved after the heat transfer surface area
distributions are optimized. The results of this paper include the
optimal performance of the endoreversible three-heat-reservoir
heat pump cycle and the optimal performance of the endore-
versible Carnot heat pump cycles. The results obtained herein
can provide some theoretical guidance for the optimal design of
absorption heat pumps. It is necessary to confirm the analysis
results by using the experimental data in the future work.
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